论文标题

同意验证监控

Consent verification monitoring

论文作者

Robol, Marco, Breaux, Travis D., Paja, Elda, Giorgini, Paolo

论文摘要

服务个性化的进步还由低成本的数据收集和处理驱动,除了多种用于身份验证,存储和营销的第三方框架。新的隐私法规,例如《通用数据保护法规》(GDPR)和《加利福尼亚州消费者隐私法》(CCPA),越来越多地要求组织在隐私政策中明确规定其数据实践。当数据实践发生变化时,该策略的新版本将发布。当数据收集或处理要求迅速改变时,这可能每年发生几次。同意进化提出了确保GDPR合规性的具体挑战。我们提出了一个正式的同意框架,以支持组织,数据用户和数据主体在对政策演变中的理解,以支持同意书的同意和非归还授予和撤回同意的同意。贡献包括:(i)在多个同意授予和撤销方案下进行数据收集和访问的正式框架; (ii)一种脚本语言,该语言实现了用于编码和执行不同方案的同意框架; (iii)五个同意进化用例,说明组织将如何使用此框架发展其政策; (iv)推理框架的可伸缩性评估。框架模型用于验证用户同意何时阻止或检测未经授权的数据收集和访问。该框架可以集成到运行时体系结构中,以实时进化,以监视策略违规。使用五个用例和模拟来评估框架以测量框架可伸缩性。仿真结果表明,该方法在计算上可扩展,以在数据收集和访问的标准模型以及实践和策略演变下用于运行时同意监视。

Advances in service personalization are driven by low-cost data collection and processing, in addition to the wide variety of third-party frameworks for authentication, storage, and marketing. New privacy regulations, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), increasingly require organizations to explicitly state their data practices in privacy policies. When data practices change, a new version of the policy is released. This can occur a few times a year, when data collection or processing requirements are rapidly changing. Consent evolution raises specific challenges to ensuring GDPR compliance. We propose a formal consent framework to support organizations, data users and data subjects in their understanding of policy evolution under a consent regime that supports both the retroactive and non-retroactive granting and withdrawal of consent. The contributions include: (i) a formal framework to reason about data collection and access under multiple consent granting and revocation scenarios; (ii) a scripting language that implements the consent framework for encoding and executing different scenarios; (iii) five consent evolution use cases that illustrate how organizations would evolve their policies using this framework; and (iv) a scalability evaluation of the reasoning framework. The framework models are used to verify when user consent prevents or detects unauthorized data collection and access. The framework can be integrated into a runtime architecture to monitor policy violations as data practices evolve in real-time. The framework was evaluated using the five use cases and a simulation to measure the framework scalability. The simulation results show that the approach is computationally scalable for use in runtime consent monitoring under a standard model of data collection and access, and practice and policy evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源