论文标题

SNES:从不完整的数据中学习可能对称的神经表面

SNeS: Learning Probably Symmetric Neural Surfaces from Incomplete Data

论文作者

Insafutdinov, Eldar, Campbell, Dylan, Henriques, João F., Vedaldi, Andrea

论文摘要

我们提出了一种准确的3D重建方法的方法。我们基于神经重建和渲染(例如神经辐射场(NERF))的最新进展的优势。这种方法的一个主要缺点是,它们无法重建对象的任何部分,这些部分在训练图像中不明确可见,这通常是野外图像和视频的情况。当缺乏证据时,可以使用诸如对称的结构先验来完成缺失的信息。但是,在神经渲染中利用此类先验是高度不平凡的:虽然几何和非反射材料可能是对称的,但环境场景的阴影和反射通常不是对称的。为了解决这个问题,我们将软对称性约束应用于3D几何和材料特性,并将外观纳入照明,反照率和反射率。我们在最近引入的CO3D数据集上评估了我们的方法,该方法的重点是重建高度反射材料的挑战。我们表明,它可以以高忠诚度重建未观察到的区域,并渲染高质量的新型视图图像。

We present a method for the accurate 3D reconstruction of partly-symmetric objects. We build on the strengths of recent advances in neural reconstruction and rendering such as Neural Radiance Fields (NeRF). A major shortcoming of such approaches is that they fail to reconstruct any part of the object which is not clearly visible in the training image, which is often the case for in-the-wild images and videos. When evidence is lacking, structural priors such as symmetry can be used to complete the missing information. However, exploiting such priors in neural rendering is highly non-trivial: while geometry and non-reflective materials may be symmetric, shadows and reflections from the ambient scene are not symmetric in general. To address this, we apply a soft symmetry constraint to the 3D geometry and material properties, having factored appearance into lighting, albedo colour and reflectivity. We evaluate our method on the recently introduced CO3D dataset, focusing on the car category due to the challenge of reconstructing highly-reflective materials. We show that it can reconstruct unobserved regions with high fidelity and render high-quality novel view images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源