论文标题
在社交网络上竞争替代方案的扩散限制
Limited-Trust in Diffusion of Competing Alternatives over Social Networks
论文作者
论文摘要
我们考虑使用游戏理论方法在社交网络中的两种替代方案的扩散。每个人都反复与邻居进行协调游戏,并决定采用哪些游戏。由于产品与他人结合并通过反复的互动,因此个人对自己的长期利益更感兴趣,并且倾向于通过选择瞬时回报来表达对他人的信任,以最大程度地提高其长期效用。为了捕获这种信任行为,我们在扩散过程中部署有限的信任平衡(LTE)。我们使用平均场近似值分析了新兴动力学对平衡点的收敛性,并研究了减少大小的吸收马尔可夫链的吸收概率和预期吸收时间的平衡状态和扩散率的收敛速率。我们还表明,在最佳响应策略下,LTE上的扩散模型可以转换为众所周知的线性阈值模型。仿真结果表明,当代理人的行为可信赖时,与仅自私自利的情况相比,它们的长期效用将大大增加。此外,马尔可夫链分析提供了对随机网络上收敛属性的良好估计。
We consider the diffusion of two alternatives in social networks using a game-theoretic approach. Each individual plays a coordination game with its neighbors repeatedly and decides which to adopt. As products are used in conjunction with others and through repeated interactions, individuals are more interested in their long-term benefits and tend to show trust to others to maximize their long-term utility by choosing a suboptimal option with respect to instantaneous payoff. To capture such trust behavior, we deploy limited-trust equilibrium (LTE) in diffusion process. We analyze the convergence of emerging dynamics to equilibrium points using mean-field approximation and study the equilibrium state and the convergence rate of diffusion using absorption probability and expected absorption time of a reduced-size absorbing Markov chain. We also show that the diffusion model on LTE under the best-response strategy can be converted to the well-known linear threshold model. Simulation results show that when agents behave trustworthy, their long-term utility will increase significantly compared to the case when they are solely self-interested. Moreover, the Markov chain analysis provides a good estimate of convergence properties over random networks.