论文标题
硅中的量子点耦合锡量Qubit的显着前景
The remarkable prospect for quantum-dot-coupled tin qubits in silicon
论文作者
论文摘要
旋转 - $ \ frac {1} {2} $ $^{119} $ sn nuclei在硅半导体中可能会产生出色的Qubits。众所周知,硅的核旋转时间很长。锡是与硅的等电相关,因此我们希望电子可以轻松地从一个Sn原子到另一个Sn原子,通过超精细的相互作用来传播量子信息,我们从全电子线性化的增强平面波密度理论计算中预测,大约是本质上的$^{29} $ Si,大约是大约十倍的量子。超精细引起的电核控制相(E-N-CPHASE)的门操作,通过仅在特定时间持续时间内以最大超精力强度的甜点将电子产生(至局部旋转),预计被预计是异常弹性的,可以充电/电压/电压/电压噪声。具有适度的磁场($> 15〜 $ MT的$ <10^{ - 6} $翻转概率)抑制了绝热的自旋倾角,并且可以通过同位素富集或使用动力学去耦或通过监控和补偿来避免核自旋浴噪声。结合磁共振控制,此操作可以实现通用量子计算。
Spin-$\frac{1}{2}$ $^{119}$Sn nuclei in a silicon semiconductor could make excellent qubits. Nuclear spins in silicon are known to have long coherence times. Tin is isoelectronic with silicon, so we expect electrons can easily shuttle from one Sn atom to another to propagate quantum information via a hyperfine interaction that we predict, from all-electron linearized augmented plane wave density functional theory calculations, to be roughly ten times larger than intrinsic $^{29}$Si. A hyperfine-induced electro-nuclear controlled-phase (e-n-CPhase) gate operation, generated (up to local rotations) by merely holding an electron at a sweet-spot of maximum hyperfine strength for a specific duration of time, is predicted to be exceptionally resilient to charge/voltage noise. Diabatic spin flips are suppressed with a modest magnetic field ($>15~$mT for $<10^{-6}$ flip probabilities) and nuclear spin bath noise may be avoided via isotopic enrichment or mitigated using dynamical decoupling or through monitoring and compensation. Combined with magnetic resonance control, this operation enables universal quantum computation.