论文标题

一种统一的方法,用于用任意刚体和刚性条的张力结构进行动态分析

A Unified Approach for Dynamic Analysis of Tensegrity Structures with Arbitrary Rigid Bodies and Rigid Bars

论文作者

Luo, Jiahui, Xu, Xiaoming, Wu, Zhigang, Wu, Shunan

论文摘要

本文提出了一种统一的方法,用于动态建模和模拟一般张力结构,并具有刚性条和僵硬的任意形状体。根据基本点和基础向量的不同组合,自然坐标被用作非最小的描述,以解决三维空间中刚体和刚性条之间的异质性。这导致一组具有恒定质量矩阵的差分 - 代数方程,并且没有三角函数。线性动力学的制剂得出以实现静态平衡的模态分析。为了对非线性动力学进行数值分析,我们得出了一种修改的符号整合方案,该方案为长期模拟产生现实的结果,并适应非保守力和边界条件。数值示例证明了在复杂情况下(包括动态外部负载,基于电缆的部署和移动边界)在复杂情况下,提出的方法对类1- $ k $一般张力结构的动态模拟的功效。新颖的张力结构还举例说明了创建多功能结构的新方法。

This paper proposes a unified approach for dynamic modeling and simulations of general tensegrity structures with rigid bars and rigid bodies of arbitrary shapes. The natural coordinates are adopted as a non-minimal description in terms of different combinations of basic points and base vectors to resolve the heterogeneity between rigid bodies and rigid bars in three-dimensional space. This leads to a set of differential-algebraic equations with a constant mass matrix and free from trigonometric functions. Formulations for linearized dynamics are derived to enable modal analysis around static equilibrium. For numerical analysis of nonlinear dynamics, we derive a modified symplectic integration scheme which yields realistic results for long-time simulations, and accommodates non-conservative forces as well as boundary conditions. Numerical examples demonstrate the efficacy of the proposed approach for dynamic simulations of Class-1-to-$k$ general tensegrity structures under complex situations, including dynamic external loads, cable-based deployments, and moving boundaries. The novel tensegrity structures also exemplify new ways to create multi-functional structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源