论文标题
现实世界的光场图像超分辨率通过降解调制
Real-World Light Field Image Super-Resolution via Degradation Modulation
论文作者
论文摘要
近年来,在光场(LF)图像超分辨率(SR)中,深度神经网络(DNN)的巨大进步。但是,现有的基于DNN的LF图像SR方法是在单个固定降解(例如,双子型下采样)上开发的,因此不能应用于具有多种降解的超级溶解实际LF图像。在本文中,我们提出了一种简单而有效的LF图像SR的方法。在我们的方法中,开发了一种实用的LF降解模型来制定真实LF图像的降解过程。然后,卷积神经网络旨在将降解之前纳入SR过程。通过使用我们的公式降解对LF图像进行训练,我们的网络可以学会调节不同的降解,同时将空间和角度信息纳入LF图像中。对合成降解和现实世界LF图像的广泛实验证明了我们方法的有效性。与现有的最新单一和LF图像SR方法相比,我们的方法在广泛的降级范围内实现了出色的SR性能,并且可以更好地推广到真实的LF图像。代码和模型可在https://yingqianwang.github.io/lf-dmnet/上找到。
Recent years have witnessed the great advances of deep neural networks (DNNs) in light field (LF) image super-resolution (SR). However, existing DNN-based LF image SR methods are developed on a single fixed degradation (e.g., bicubic downsampling), and thus cannot be applied to super-resolve real LF images with diverse degradation. In this paper, we propose a simple yet effective method for real-world LF image SR. In our method, a practical LF degradation model is developed to formulate the degradation process of real LF images. Then, a convolutional neural network is designed to incorporate the degradation prior into the SR process. By training on LF images using our formulated degradation, our network can learn to modulate different degradation while incorporating both spatial and angular information in LF images. Extensive experiments on both synthetically degraded and real-world LF images demonstrate the effectiveness of our method. Compared with existing state-of-the-art single and LF image SR methods, our method achieves superior SR performance under a wide range of degradation, and generalizes better to real LF images. Codes and models are available at https://yingqianwang.github.io/LF-DMnet/.