论文标题
曲线上向量束的模量空间的预测性
Projectivity of the moduli space of vector bundles on a curve
论文作者
论文摘要
我们讨论了在$ g \ geq 2 $的曲线上,在可分离矢量束的模量空间的预测率。这是使用几何不变理论获得的1960年代的经典结果。我们概述了一种现代方法,该方法将良好模量空间的最新机械与确定线束技术结合在一起。产生足够的线条捆绑的关键步骤是通过fallings进行的,esteves-popa的改进。我们希望将这种方法作为其他投影性论点的蓝图提升。
We discuss the projectivity of the moduli space of semistable vector bundles on a curve of genus $g\geq 2$. This is a classical result from the 1960s, obtained using geometric invariant theory. We outline a modern approach that combines the recent machinery of good moduli spaces with determinantal line bundle techniques. The crucial step producing an ample line bundle follows an argument by Faltings with improvements by Esteves-Popa. We hope to promote this approach as a blueprint for other projectivity arguments.