论文标题

机器学习培训对内存系统的真实处理

Machine Learning Training on a Real Processing-in-Memory System

论文作者

Gómez-Luna, Juan, Guo, Yuxin, Brocard, Sylvan, Legriel, Julien, Cimadomo, Remy, Oliveira, Geraldo F., Singh, Gagandeep, Mutlu, Onur

论文摘要

训练机学习算法是一个计算密集型过程,由于反复访问大型培训数据集,因此经常会限制内存。结果,以处理器为中心的系统(例如CPU,GPU)遭受了内存单元和处理单元之间的昂贵数据移动,这会消耗大量的能量和执行周期。以内存为中心的计算系统,即具有内存处理(PIM)功能的计算系统,可以减轻此数据运动瓶颈。 我们的目标是了解现代通用PIM体系结构加速机器学习培训的潜力。为此,我们(1)在现实世界通用PIM体系结构上实施了几种代表性的经典机器学习算法(即线性回归,逻辑回归,决策树,K-MEANS聚类),(2)以准确性,性能和缩放为特征,以及(3)与CPU和GPU上的对手(3)相比。我们在具有2500多个PIM核心的以内存计算系统上进行的实验评估表明,当PIM硬件在必要的操作和数据类型上,通用PIM体系结构可以极大地加速记忆的机器学习工作负载。 据我们所知,我们的工作是第一个评估现实世界通用PIM架构上机器学习算法的培训的工作。

Training machine learning algorithms is a computationally intensive process, which is frequently memory-bound due to repeatedly accessing large training datasets. As a result, processor-centric systems (e.g., CPU, GPU) suffer from costly data movement between memory units and processing units, which consumes large amounts of energy and execution cycles. Memory-centric computing systems, i.e., computing systems with processing-in-memory (PIM) capabilities, can alleviate this data movement bottleneck. Our goal is to understand the potential of modern general-purpose PIM architectures to accelerate machine learning training. To do so, we (1) implement several representative classic machine learning algorithms (namely, linear regression, logistic regression, decision tree, K-means clustering) on a real-world general-purpose PIM architecture, (2) characterize them in terms of accuracy, performance and scaling, and (3) compare to their counterpart implementations on CPU and GPU. Our experimental evaluation on a memory-centric computing system with more than 2500 PIM cores shows that general-purpose PIM architectures can greatly accelerate memory-bound machine learning workloads, when the necessary operations and datatypes are natively supported by PIM hardware. To our knowledge, our work is the first one to evaluate training of machine learning algorithms on a real-world general-purpose PIM architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源