论文标题

基于强化学习的装置位置在城市道路网络中

Reinforcement Learning-based Placement of Charging Stations in Urban Road Networks

论文作者

von Wahl, Leonie, Tempelmeier, Nicolas, Sao, Ashutosh, Demidova, Elena

论文摘要

从常规活动性到电气性的过渡在很大程度上取决于为基础设施的可用性和最佳放置。本文研究了在城市地区充电站的最佳位置。我们最大程度地提高了该地区的充电基础设施供应,并在设定预算限制的同时最大程度地减少等待,旅行和充电时间。此外,我们还包括在家中收取对车辆的可能性,以对整个城市地区的实际充电需求进行更精致的估计。我们将充电站问题的放置作为非线性整数优化问题,该问题寻求充电站的最佳位置以及不同充电类型的充电堆数量。我们设计了一种新型的深钢筋学习方法来解决充电站的位置问题(PCRL)。与五个基线相比,对现实世界数据集的广泛实验表明,PCRL如何减少等待时间和旅行时间,同时增加收费计划的好处。与现有的基础设施相比,我们可以将等待时间最多减少97%,并将收益提高到497%。

The transition from conventional mobility to electromobility largely depends on charging infrastructure availability and optimal placement.This paper examines the optimal placement of charging stations in urban areas. We maximise the charging infrastructure supply over the area and minimise waiting, travel, and charging times while setting budget constraints. Moreover, we include the possibility of charging vehicles at home to obtain a more refined estimation of the actual charging demand throughout the urban area. We formulate the Placement of Charging Stations problem as a non-linear integer optimisation problem that seeks the optimal positions for charging stations and the optimal number of charging piles of different charging types. We design a novel Deep Reinforcement Learning approach to solve the charging station placement problem (PCRL). Extensive experiments on real-world datasets show how the PCRL reduces the waiting and travel time while increasing the benefit of the charging plan compared to five baselines. Compared to the existing infrastructure, we can reduce the waiting time by up to 97% and increase the benefit up to 497%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源