论文标题
代数超组的Frobenius内核和Steinberg的张量定理
Frobenius kernels of algebraic supergroups and Steinberg's tensor product theorem
论文作者
论文摘要
对于在一个字段上定义的分割的准超级组$ g $,我们研究了$ g $的Frobenius内核的结构和表示,我们为$ G_R $提供了必要和充分的条件,以使$ g $的根系是单模型的。在某些自然假设下,我们还为$ g $建立Steinberg的张量定理。
For a split quasireductive supergroup $G$ defined over a field, we study structure and representation of Frobenius kernels $G_r$ of $G$ and we give a necessary and sufficient condition for $G_r$ to be unimodular in terms of the root system of $G$. We also establish Steinberg's tensor product theorem for $G$ under some natural assumptions.