论文标题

迈向环境智能:通过以任务为导向的感应,计算和通信集成的联合边缘学习

Toward Ambient Intelligence: Federated Edge Learning with Task-Oriented Sensing, Computation, and Communication Integration

论文作者

Liu, Peixi, Zhu, Guangxu, Wang, Shuai, Jiang, Wei, Luo, Wu, Poor, H. Vincent, Cui, Shuguang

论文摘要

在本文中,我们通过基于环境智能中无线传感的人类运动识别的具体案例研究来解决联合边缘学习(FEES)的关节感应,计算和通信(SC $^{2} $)的资源分配。首先,通过分析人类运动识别中的无线传感过程,我们发现传感传输功率的阈值值超过了,从而产生了具有相同令人满意的质量的传感数据样本。然后,在训练时间,能源供应和每个边缘设备的传感质量下,关节SC $^{2} $资源分配问题是为了最大化感觉的收敛速度。解决此问题需要按顺序解决两个子问题:第一个减少了关节感应和通信资源分配,从而最大程度地提高了在整个训练过程中可以感觉到的样品总数;第二个涉及在所有通信回合中获得的感应样品总数的分区,以确定每个回合的批次大小,以最大化收敛速度。接头传感和通信资源分配的第一个子问题通过利用不同控制变量(资源)之间的派生关系将其转换为单个可变性的优化问题,从而可以通过一维网格搜索实现有效的解决方案。对于第二个子问题,发现在每个回合中感觉到(或批量大小)的样品数量是在回合中获得的损耗函数值的降低函数。基于这种关系,每个通信回合处的近似最佳批处理大小作为回合索引的函数以封闭形式得出。最后,提供了广泛的仿真结果,以验证拟议的联合SC $^{2} $资源分配方案的优越性。

In this paper, we address the problem of joint sensing, computation, and communication (SC$^{2}$) resource allocation for federated edge learning (FEEL) via a concrete case study of human motion recognition based on wireless sensing in ambient intelligence. First, by analyzing the wireless sensing process in human motion recognition, we find that there exists a thresholding value for the sensing transmit power, exceeding which yields sensing data samples with approximately the same satisfactory quality. Then, the joint SC$^{2}$ resource allocation problem is cast to maximize the convergence speed of FEEL, under the constraints on training time, energy supply, and sensing quality of each edge device. Solving this problem entails solving two subproblems in order: the first one reduces to determine the joint sensing and communication resource allocation that maximizes the total number of samples that can be sensed during the entire training process; the second one concerns the partition of the attained total number of sensed samples over all the communication rounds to determine the batch size at each round for convergence speed maximization. The first subproblem on joint sensing and communication resource allocation is converted to a single-variable optimization problem by exploiting the derived relation between different control variables (resources), which thus allows an efficient solution via one-dimensional grid search. For the second subproblem, it is found that the number of samples to be sensed (or batch size) at each round is a decreasing function of the loss function value attained at the round. Based on this relationship, the approximate optimal batch size at each communication round is derived in closed-form as a function of the round index. Finally, extensive simulation results are provided to validate the superiority of the proposed joint SC$^{2}$ resource allocation scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源