论文标题

迈向推荐系统的通用序列表示学习

Towards Universal Sequence Representation Learning for Recommender Systems

论文作者

Hou, Yupeng, Mu, Shanlei, Zhao, Wayne Xin, Li, Yaliang, Ding, Bolin, Wen, Ji-Rong

论文摘要

为了开发有效的顺序推荐器,提出了一系列序列表示学习(SRL)方法来模拟历史用户行为。大多数现有的SRL方法都依赖于开发序列模型以更好地捕获用户偏好的明确项目ID。尽管在某种程度上有效,但由于通过明确建模项目ID的限制,这些方法很难转移到新的建议方案。为了解决这个问题,我们提出了一种新颖的通用序列表示方法,名为UNISREC。提出的方法利用项目的文本在不同的建议方案中学习可转移表示形式。为了学习通用项目表示形式,我们设计了一个基于参数美白和Experts的混合物增强的适配器的轻巧项目编码体系结构。为了学习通用序列表示,我们通过抽样多域负面因素介绍了两个对比的预训练任务。借助预训练的通用序列表示模型,我们的方法可以在电感或跨传导设置下以参数有效的方式有效地转移到新的推荐域或平台上。在现实世界数据集上进行的广泛实验证明了该方法的有效性。特别是,我们的方法还导致跨平台环境中的性能提高,显示了所提出的通用SRL方法的强转换性。代码和预培训模型可在以下网址获得:https://github.com/rucaibox/unisrec。

In order to develop effective sequential recommenders, a series of sequence representation learning (SRL) methods are proposed to model historical user behaviors. Most existing SRL methods rely on explicit item IDs for developing the sequence models to better capture user preference. Though effective to some extent, these methods are difficult to be transferred to new recommendation scenarios, due to the limitation by explicitly modeling item IDs. To tackle this issue, we present a novel universal sequence representation learning approach, named UniSRec. The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios. For learning universal item representations, we design a lightweight item encoding architecture based on parametric whitening and mixture-of-experts enhanced adaptor. For learning universal sequence representations, we introduce two contrastive pre-training tasks by sampling multi-domain negatives. With the pre-trained universal sequence representation model, our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way, under either inductive or transductive settings. Extensive experiments conducted on real-world datasets demonstrate the effectiveness of the proposed approach. Especially, our approach also leads to a performance improvement in a cross-platform setting, showing the strong transferability of the proposed universal SRL method. The code and pre-trained model are available at: https://github.com/RUCAIBox/UniSRec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源