论文标题

$ \ texttt {gradicon} $:通过梯度倒数一致性近似差异性

$\texttt{GradICON}$: Approximate Diffeomorphisms via Gradient Inverse Consistency

论文作者

Tian, Lin, Greer, Hastings, Vialard, François-Xavier, Kwitt, Roland, Estépar, Raúl San José, Rushmore, Richard Jarrett, Makris, Nikolaos, Bouix, Sylvain, Niethammer, Marc

论文摘要

我们提出了一种在医学图像注册的背景下学习图像对之间定期空间转换的方法。与基于优化的注册技术和许多基于现代学习的方法相反,我们不会直接惩罚转换不规则性,而是通过逆逐体惩罚来促进转型规律性。我们使用神经网络来预测源和目标图像之间的地图以及交换源和目标图像时的地图。与现有方法不同,我们从身份矩阵中构成了这两个结果的地图,并将此组合的$ \ bf {jacobian} $正规化。此正常化程序 - $ \ texttt {gradicon} $ - 与直接促进地图组成的逆一致性相比,在培训注册模型时会产生更好的收敛性,同时保留后者的理想隐式正则化效果。我们使用一组超参数和单个非数据集特定的培训协议在各种现实世界中的医疗图像数据集上实现了最新的注册性能。

We present an approach to learning regular spatial transformations between image pairs in the context of medical image registration. Contrary to optimization-based registration techniques and many modern learning-based methods, we do not directly penalize transformation irregularities but instead promote transformation regularity via an inverse consistency penalty. We use a neural network to predict a map between a source and a target image as well as the map when swapping the source and target images. Different from existing approaches, we compose these two resulting maps and regularize deviations of the $\bf{Jacobian}$ of this composition from the identity matrix. This regularizer -- $\texttt{GradICON}$ -- results in much better convergence when training registration models compared to promoting inverse consistency of the composition of maps directly while retaining the desirable implicit regularization effects of the latter. We achieve state-of-the-art registration performance on a variety of real-world medical image datasets using a single set of hyperparameters and a single non-dataset-specific training protocol.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源