论文标题

采矿来自单个阳性标签的多标签样品

Mining Multi-Label Samples from Single Positive Labels

论文作者

Cho, Youngin, Kim, Daejin, Khan, Mohammad Azam, Choo, Jaegul

论文摘要

有条件的生成对抗网络(CGANS)在课堂条件生成任务中显示出卓越的结果。为了同时控制多种条件,CGAN需要多标签训练数据集,其中可以将多个标签分配给每个数据实例。然而,巨大的注释成本限制了在实际情况下多标签数据集的可访问性。因此,在这项研究中,我们探索了称为单个正设置的实用环境,其中每个数据实例仅由一个没有明确的负标签的正面标签注释。为了在单个正面设置中生成多标签数据,我们提出了一种基于马尔可夫链蒙特卡洛方法的新型抽样方法,称为单一标记(S2M)采样。作为一种广泛适用的“附加”方法,我们提出的S2M采样方法使现有的无条件和有条件的gans能够以最小的注释成本绘制高质量的多标签数据。在真实图像数据集上进行的广泛实验可以验证我们方法的有效性和正确性,即使与经过完全注释的数据集训练的模型相比。

Conditional generative adversarial networks (cGANs) have shown superior results in class-conditional generation tasks. To simultaneously control multiple conditions, cGANs require multi-label training datasets, where multiple labels can be assigned to each data instance. Nevertheless, the tremendous annotation cost limits the accessibility of multi-label datasets in real-world scenarios. Therefore, in this study we explore the practical setting called the single positive setting, where each data instance is annotated by only one positive label with no explicit negative labels. To generate multi-label data in the single positive setting, we propose a novel sampling approach called single-to-multi-label (S2M) sampling, based on the Markov chain Monte Carlo method. As a widely applicable "add-on" method, our proposed S2M sampling method enables existing unconditional and conditional GANs to draw high-quality multi-label data with a minimal annotation cost. Extensive experiments on real image datasets verify the effectiveness and correctness of our method, even when compared to a model trained with fully annotated datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源