论文标题

同时基于学习的自适应控制Euler Lagrange系统,并保证参数收敛

Concurrent Learning Based Adaptive Control of Euler Lagrange Systems with Guaranteed Parameter Convergence

论文作者

Zergeroglu, Erkan, Tatlicioglu, Enver, Obuz, Serhat

论文摘要

这项工作为具有保证的跟踪和参数估计误差收敛的Euler Lagrange系统的自适应跟踪控制提供了解决方案。具体来说,通过使用所需系统动力学的过滤版本与所需状态的基于状态的回归矩阵融合的基于同一学习的更新规则已被利用,以确保位置跟踪错误和参数估计误差项呈指数收敛到原始定价。由于提出的控制器中使用的回归矩阵利用了系统状态的所需版本,因此可以从所需系统轨迹的知识中形成一个初始的,充分的令人兴奋的内存堆栈,从而消除文献中先前建议的基于基于的基于同一学习的控制器所需的初始激发条件。为了说明所提出的方法的模块化,还提供了仅用于控制器设计的位置测量值的输出反馈版本,其中仅可用于控制器设计(梯度和复合类型适应)。通过基于Lyapunov的分析,确保所有提出的控制器的闭环信号的稳定性和界限。在这项工作中考虑了一类完全驱动的Euler Lagrange系统的轨迹跟踪控制。系统动力学被认为受参数不确定性的约束,并且在线标识不确定的模型参数也是针对的。与过去的研究相比,通过一种新的方法,建议使用所需状态来形成回归矩阵,并设计了基于所需补偿的同时学习类型自适应更新规则。通过利用新颖的Lyapunov分析,确保了跟踪和参数识别误差对原点的半全球指数收敛。

This work presents a solution to the adaptive tracking control of Euler Lagrange systems with guaranteed tracking and parameter estimation error convergence. Specifically a concurrent learning based update rule fused by the filtered version of the desired system dynamics in conjunction with a desired state based regression matrix has been utilized to ensure that both the position tracking error and parameter estimation error terms converge to origin exponentially. As the regression matrix used in proposed controller makes use of the desired versions of the system states, an initial, sufficiently exciting memory stack can be formed from the knowledge of the desired system trajectory a priori, thus removing the initial excitation condition required for the previously proposed concurrent learning based controllers in the literature. The output feedback versions of the proposed method where only the position measurements are available for the controller design, (for both gradient and composite type adaptions) are also presented in order to illustrate the modularity of the proposed method. The stability and boundedness of the closed loop signals for all the proposed controllers are ensured via Lyapunov based analysis. %Trajectory tracking control of a class of fully actuated Euler Lagrange systems is considered in this work. System dynamics is considered to be subject to parametric uncertainties and on--line identification uncertain model parameters is also aimed. When compared with the relevant past research, via a novel approach, desired states are proposed to be used in forming the regression matrix and a desired compensation based concurrent learning type adaptive update rule is designed. Via utilizing novel Lyapunov analysis, semi--global exponential convergence of both tracking and parameter identification error to the origin is ensured.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源