论文标题

将高分辨率的触觉传感整合到GRASP稳定性预测中

Integrating High-Resolution Tactile Sensing into Grasp Stability Prediction

论文作者

Chumbley, Lachlan, Gu, Morris, Newbury, Rhys, Leitner, Jurgen, Cosgun, Akansel

论文摘要

我们研究了如何将高分辨率触觉传感器与视觉和深度传感结合使用,以改善掌握稳定性预测。在模拟高分辨率触觉传感的最新进展,尤其是触觉模拟器,使我们能够评估如何结合感应方式训练神经网络。借助训练大型神经网络所需的大量数据,机器人模拟器提供了一种快速自动化数据收集过程的方法。我们通过消融研究扩展现有工作,并增加了从YCB基准组中获得的一组对象。我们的结果表明,尽管视觉,深度和触觉感应的结合为已知对象提供了最佳预测结果,但该网络未能推广到未知对象。我们的工作还解决了触觉模拟中机器人抓握的现有问题以及如何克服它们。

We investigate how high-resolution tactile sensors can be utilized in combination with vision and depth sensing, to improve grasp stability prediction. Recent advances in simulating high-resolution tactile sensing, in particular the TACTO simulator, enabled us to evaluate how neural networks can be trained with a combination of sensing modalities. With the large amounts of data needed to train large neural networks, robotic simulators provide a fast way to automate the data collection process. We expand on the existing work through an ablation study and an increased set of objects taken from the YCB benchmark set. Our results indicate that while the combination of vision, depth, and tactile sensing provides the best prediction results on known objects, the network fails to generalize to unknown objects. Our work also addresses existing issues with robotic grasping in tactile simulation and how to overcome them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源