论文标题

缩小差距:改进的探测器训练,并带有嘈杂的位置注释

Narrowing the Gap: Improved Detector Training with Noisy Location Annotations

论文作者

Wang, Shaoru, Gao, Jin, Li, Bing, Hu, Weiming

论文摘要

深度学习方法需要大量的注释数据以优化参数。例如,附加具有准确边界框注释的数据集对于现代对象检测任务至关重要。但是,以这种像素精度的标记是费力且耗时的,并且精心制作的标记程序对于降低人造噪声是必不可少的,涉及注释审查和接受度测试。在本文中,我们专注于嘈杂的位置注释对对象检测方法的性能的影响,并旨在减少噪声的不利影响。首先,当将噪声引入边界框注释时,一阶段和两阶段探测器在实验上观察到明显的性能降解。例如,我们的合成噪声导致可可测试分裂时FCO探测器的性能从38.9%的AP降低到33.6%的AP,而更快的R-CNN的fcos检测器则从33.9%的AP下降到37.8%的AP至33.7%的AP。其次,提出了一种基于贝叶斯过滤器进行预测合奏的自我纠正技术,以更好地利用教师学习范式后的嘈杂位置注释。合成和现实世界情景的实验始终证明了我们方法的有效性,例如,我们的方法将FCOS检测器的降解性能从33.6%的AP提高到可可的35.6%AP。

Deep learning methods require massive of annotated data for optimizing parameters. For example, datasets attached with accurate bounding box annotations are essential for modern object detection tasks. However, labeling with such pixel-wise accuracy is laborious and time-consuming, and elaborate labeling procedures are indispensable for reducing man-made noise, involving annotation review and acceptance testing. In this paper, we focus on the impact of noisy location annotations on the performance of object detection approaches and aim to, on the user side, reduce the adverse effect of the noise. First, noticeable performance degradation is experimentally observed for both one-stage and two-stage detectors when noise is introduced to the bounding box annotations. For instance, our synthesized noise results in performance decrease from 38.9% AP to 33.6% AP for FCOS detector on COCO test split, and 37.8%AP to 33.7%AP for Faster R-CNN. Second, a self-correction technique based on a Bayesian filter for prediction ensemble is proposed to better exploit the noisy location annotations following a Teacher-Student learning paradigm. Experiments for both synthesized and real-world scenarios consistently demonstrate the effectiveness of our approach, e.g., our method increases the degraded performance of the FCOS detector from 33.6% AP to 35.6% AP on COCO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源