论文标题

在社交媒体中基础:建立聊天对话模型的方法

Grounding in social media: An approach to building a chit-chat dialogue model

论文作者

Choudhary, Ritvik, Kawahara, Daisuke

论文摘要

建立能够具有丰富人类的对话能力的开放域对话系统是语言产生的基本挑战之一。但是,即使该领域的最新进展,现有的开放域生成模型也无法捕获和利用外部知识,从而导致对看不见的话语的重复或通用响应。当前关于知识对话生成的工作主要集中于角色融合或搜索基于事实的结构化知识来源(例如Wikipedia)。我们的方法采用了更广泛,更简单的方法,旨在通过在社交媒体上发现的随意互动模仿人类的反应行为来提高系统的原始对话能力。该模型利用联合检索器生成器设置,从Reddit查询了大量过滤的评论数据,以充当SEQ2SEQ生成器的附加上下文。自动和人类对开放域对话数据集的评估证明了我们方法的有效性。

Building open-domain dialogue systems capable of rich human-like conversational ability is one of the fundamental challenges in language generation. However, even with recent advancements in the field, existing open-domain generative models fail to capture and utilize external knowledge, leading to repetitive or generic responses to unseen utterances. Current work on knowledge-grounded dialogue generation primarily focuses on persona incorporation or searching a fact-based structured knowledge source such as Wikipedia. Our method takes a broader and simpler approach, which aims to improve the raw conversation ability of the system by mimicking the human response behavior through casual interactions found on social media. Utilizing a joint retriever-generator setup, the model queries a large set of filtered comment data from Reddit to act as additional context for the seq2seq generator. Automatic and human evaluations on open-domain dialogue datasets demonstrate the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源