论文标题

耦合石墨烯绝缘异质结构中的协同相关状态和非平凡拓扑结构

Synergistic correlated states and nontrivial topology in coupled graphene-insulator heterostructures

论文作者

Lu, Xin, Zhang, Shihao, Wang, Yaning, Gao, Xiang, Yang, Kaining, Guo, Zhongqing, Gao, Yuchen, Ye, Yu, Han, Zheng Vitto, Liu, Jianpeng

论文摘要

在这项工作中,我们研究了两种不同类型的相互作用电子系统中的协同相关状态,结合了层间库仑相互作用。我们建议可以在具有栅极可调频带对齐的一种库仑耦合的石墨烯 - 绝缘子异质结构中实现这种情况。我们发现,借助层间相互作用的库仑在两层中相互作用的电子之间的耦合,无法以任何一个单个层显示的电子状态以合作和协同的方式出现。具体而言,由于频带对齐,可以在栅极电压控制下将电荷载体传递在石墨烯和基板之间,该电压可以在基板表面产生长波长电子晶体。该电子晶体在石墨烯中的狄拉克电子上发挥了超晶格库仑电势,该电源产生的子带的非相互作用速度降低。结果,石墨烯中的$ e $ - $ e $ coulomb互动将发挥更重要的作用,从而在充电中立点处引起迪拉克状态,并伴随着相互作用增强的费米速度。此外,超晶格电位可能会导致拓扑上的非平凡子带结构,这些结构可通过超晶格的常数和各向异性来调整。相度地,通过合作层间库仑耦合,可以在这种耦合双层异质结构中基本稳定在底物中形成的电子晶体。我们进一步执行高通量的第一原理计算,以确定许多有希望的绝缘材料作为石墨烯的候选底物,以证明这些效果。

In this work, we study the synergistic correlated states in two distinct types of interacting electronic systems coupled by interlayer Coulomb interactions. We propose that this scenario can be realized in a type of Coulomb-coupled graphene-insulator heterostructures with gate tunable band alignment. We find that, by virtue of the interlayer Coulomb coupling between the interacting electrons in the two layers, electronic states that cannot be revealed in either individual layer would emerge in a cooperative and synergistic manner. Specifically, as a result of the band alignment, charge carriers can be transferred between graphene and the substrate under the control of gate voltages, which can yield a long-wavelength electronic crystal at the surface of the substrate. This electronic crystal exerts a superlattice Coulomb potential on the Dirac electrons in graphene, which generates subbands with reduced non-interacting Fermi velocity. As a result, $e$-$e$ Coulomb interactions within graphene would play a more important role, giving rise to a gapped Dirac state at the charge neutrality point, accompanied by interaction-enhanced Fermi velocity. Moreover, the superlattice potential can give rise to topologically nontrivial subband structures which are tunable by superlattice's constant and anisotropy. Reciprocally, the electronic crystal formed in the substrate can be substantially stabilized in such coupled bilayer heterostructure by virtue of the cooperative interlayer Coulomb coupling. We further perform high-throughput first principles calculations to identify a number of promising insulating materials as candidate substrates for graphene to demonstrate these effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源