论文标题
定期多元正式电力系列
Periodic multivariate formal power series
论文作者
论文摘要
具有均匀分解的多变量正式功率系列$φ$的系统$φ= \ sum_ {k = 0}^\inftyφ_k$,如果$φ_0= 0 $ = 0 $ and $ \ mathrm {det}(det}(φ_1)(φ_1)(φ_1)\ ne 0。证明g_ \ infty(n,k)$ at $φ_1$ diagonalizable的每个定期系列$φ\ in CONJUGATE均为$φ_1。$这将所有定期系列分类为$ g_ \ infty(n,\ mathbb {c})。
A system of multivariate formal power series $φ$ with a homogeneous decomposition $φ=\sum_{k=0}^\inftyφ_k$ is invertible under composition if $φ_0=0$ and $\mathrm{det}(φ_1)\ne 0.$ All invertible series over a field $K$ form a formal transformation group $G_\infty(n,K).$ We prove that every periodic series $φ\in G_\infty(n,K)$ with $φ_1$ diagonalizable is conjugate to $φ_1.$ This classifies all periodic series in $G_\infty(n,\mathbb{C}).$ A constraint for a periodic series is obtained when its first term is a multiple of identity.