论文标题

刀片:联邦学习中拜占庭式攻击和防御的统一基准套件

Blades: A Unified Benchmark Suite for Byzantine Attacks and Defenses in Federated Learning

论文作者

Li, Shenghui, Ngai, Edith, Ye, Fanghua, Ju, Li, Zhang, Tianru, Voigt, Thiemo

论文摘要

联合学习(FL)促进了跨不同物联网和边缘设备的分布培训,从而保护了数据的隐私。 FL的固有分布结构引入了漏洞,尤其是从旨在使本地更新偏向其优势的对抗设备。尽管大量的研究着重于拜占庭式的FL,但学术界尚未建立一个全面的基准套件,是公正评估和对不同技术的比较的关键。本文介绍了刀片,这是一种可扩展,可扩展且易于配置的基准套件,该套件支持研究人员和开发人员有效地实施和验证了针对拜占庭式FL中基线算法的新型策略。叶片包含代表性攻击和防御策略的内置实现,并提供了一个无缝整合新想法的用户友好界面。使用刀片,我们在广泛的实验配置(总共约1,500次试验)上重新评估了代表性攻击和防御措施。通过我们的广泛实验,我们获得了对FL鲁棒性的新见解,并突出了以前被忽视的局限性,因为在各种攻击环境下没有彻底的评估和基线的比较。

Federated learning (FL) facilitates distributed training across different IoT and edge devices, safeguarding the privacy of their data. The inherent distributed structure of FL introduces vulnerabilities, especially from adversarial devices aiming to skew local updates to their advantage. Despite the plethora of research focusing on Byzantine-resilient FL, the academic community has yet to establish a comprehensive benchmark suite, pivotal for impartial assessment and comparison of different techniques. This paper presents Blades, a scalable, extensible, and easily configurable benchmark suite that supports researchers and developers in efficiently implementing and validating novel strategies against baseline algorithms in Byzantine-resilient FL. Blades contains built-in implementations of representative attack and defense strategies and offers a user-friendly interface that seamlessly integrates new ideas. Using Blades, we re-evaluate representative attacks and defenses on wide-ranging experimental configurations (approximately 1,500 trials in total). Through our extensive experiments, we gained new insights into FL robustness and highlighted previously overlooked limitations due to the absence of thorough evaluations and comparisons of baselines under various attack settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源