论文标题
关于第一类贝塞尔函数的三角近似值和三角功率总和的注释
A note on trigonometric approximations of Bessel functions of the first kind and trigonometric power sums
论文作者
论文摘要
我重新考虑了贝塞尔函数具有有限三角函数总和的近似值,鉴于对带有三角系数的诺伊曼·贝塞尔系列的评估。正确选择角度可以有效地选择三角总和。基于这些系列,我还获得了具有余弦和正弦函数的新参数总和的直接非标准评估。
I reconsider the approximation of Bessel functions with finite sums of trigonometric functions, in the light of recent evaluations of Neumann-Bessel series with trigonometric coefficients. A proper choice of the angle allows for an efficient choice of the trigonometric sum. Based on these series, I also obtain straightforward non-standard evaluations of new parametric sums with powers of cosine and sine functions.