论文标题
从边界上的高色对称性保护的自我纠正
Self-correction from higher-form symmetry protection on a boundary
论文作者
论文摘要
最近的工作表明,只要它受1形对称性保护,就可以在3个空间维度中存在自我校正的内存。要求系统的动力学遵守这种类型的对称性等效于在整个整体中执行宏观数量的对称项。在本文中,我们展示了如何用出现的1形对称性代替大体中的显式1形对称性。尽管对称性仍然必须在边界上明确执行,但这仅需要O(l^2)项而不是O(l^3)项。然后,我们将此边界重新诠释为宽敞拓扑顺序的对称性保护拓扑缺陷。即使在没有对称性的情况下,缺陷也可以具有有趣的内存属性。
Recent work has shown that a self-correcting memory can exist in 3 spatial dimensions, provided it is protected by a 1-form symmetry. Requiring that a system's dynamics obey this type of symmetry is equivalent to enforcing a macroscopic number of symmetry terms throughout the bulk. In this paper, we show how to replace the explicit 1-form symmetry in the bulk with an emergent 1-form symmetry. Although the symmetry still has to be explicitly enforced on the boundary, this only requires O(L^2) terms instead of O(L^3) terms. We then reinterpret this boundary as a symmetry-protected topological defect in a bulk topological order. Defects can have interesting memory properties even in the absence of symmetry.