论文标题
传输丢失:关于网络腐败对视频机器学习模型的影响
Lost in Transmission: On the Impact of Networking Corruptions on Video Machine Learning Models
论文作者
论文摘要
我们研究网络腐败是如何通过网络错误引起的数据 - 影响视频机器学习(ML)模型。我们发现了一个基准视频ML数据集中的Kinetics-400中明显的网络损坏。在一项仿真研究中,我们研究了(1)哪些人工制品腐败导致什么,(2)这种伪像如何影响ML模型,以及(3)标准鲁棒性方法是否可以减轻其负面影响。我们发现网络损坏会导致视觉和时间伪像(即涂抹颜色或框架掉落)。这些网络损坏会在各种视频ML任务上降低性能,但是效果因任务和数据集而异,具体取决于任务所需的时间上下文。最后,我们评估数据扩展(用于数据损坏的标准防御) - 但发现它不会恢复性能。
We study how networking corruptions--data corruptions caused by networking errors--affect video machine learning (ML) models. We discover apparent networking corruptions in Kinetics-400, a benchmark video ML dataset. In a simulation study, we investigate (1) what artifacts networking corruptions cause, (2) how such artifacts affect ML models, and (3) whether standard robustness methods can mitigate their negative effects. We find that networking corruptions cause visual and temporal artifacts (i.e., smeared colors or frame drops). These networking corruptions degrade performance on a variety of video ML tasks, but effects vary by task and dataset, depending on how much temporal context the tasks require. Lastly, we evaluate data augmentation--a standard defense for data corruptions--but find that it does not recover performance.