论文标题
具有多节点和自我互动的稀疏布尔网络的动力学
Dynamics of sparse Boolean networks with multi-node and self-interactions
论文作者
论文摘要
我们分析了稀疏布尔网络的平衡行为和非平衡动力学,其自我相互作用会根据同步的Glauber动力学而发展。平衡分析是通过将腔方法的新颖应用在温度依赖性伪黑米顿量的新颖应用中实现的,该伪 - hamiltonian表征具有平行动力学的系统的平衡状态。同样,可以使用腔体方法的动态版本来分析非平衡动力学。然而,众所周知,当存在自我互动时,由于存在强烈的记忆效应,动态腔方法的直接应用很麻烦,这阻止了对动力学的明确分析,超出了几个时间步骤。为了克服这一难度,我们表明可以将$ n $变量的系统映射到等效的两部分系统$ 2N $变量,为此,在通常的一次性近似方案下可以使用动态腔方法。这种大量的技术进步允许研究具有自相互作用的系统的瞬态和长期行为。最后,我们通过将其映射到具有2体相互作用的布尔变量的两部分系统,研究具有多节点相互作用的系统的动力学,最近用于建模基因调节网络。我们表明,当相互作用具有一定程度的双向性时,这些系统能够支持多样的吸引者,这是基因调节网络维持多细胞生活的重要要求。
We analyse the equilibrium behaviour and non-equilibrium dynamics of sparse Boolean networks with self-interactions that evolve according to synchronous Glauber dynamics. Equilibrium analysis is achieved via a novel application of the cavity method to the temperature-dependent pseudo-Hamiltonian that characterises the equilibrium state of systems with parallel dynamics. Similarly, the non-equilibrium dynamics can be analysed by using the dynamical version of the cavity method. It is well known, however, that when self-interactions are present, direct application of the dynamical cavity method is cumbersome, due to the presence of strong memory effects, which prevent explicit analysis of the dynamics beyond a few time steps. To overcome this difficulty, we show that it is possible to map a system of $N$ variables to an equivalent bipartite system of $2N$ variables, for which the dynamical cavity method can be used under the usual one time approximation scheme. This substantial technical advancement allows for the study of transient and long-time behaviour of systems with self-interactions. Finally, we study the dynamics of systems with multi-node interactions, recently used to model gene regulatory networks, by mapping this to a bipartite system of Boolean variables with 2-body interactions. We show that when interactions have a degree of bidirectionality such systems are able to support a multiplicity of diverse attractors, an important requirement for a gene-regulatory network to sustain multi-cellular life.