论文标题

机器教学中的人类互动设计

Human-AI Interaction Design in Machine Teaching

论文作者

Taneja, Karan, Sikka, Harshvardhan, Goel, Ashok

论文摘要

机器教学(MT)是一个互动过程,其中人和机器与训练机器学习模型(ML)的目标相互作用。人类老师交流了他们的任务专业知识,机器学生收集了所需的数据和知识以产生ML模型。 MT系统的开发是共同最大程度地减少教学和学习者错误率的时间。 MT系统中人类相互作用的设计不仅会影响教学效率,而且通过影响教学质量来间接影响ML的性能。在本文中,我们以先前的工作为基础,在该工作中,我们提出了一个MT框架,其中包括三个组成部分,即教学界面,机器学习者和知识库,并专注于实现教学界面所涉及的人类互动设计。我们概述了从ML任务开始开发MT系统时需要解决的设计决策。该论文遵循了苏格拉底式方法,需要在一个好奇的学生和智者老师之间进行对话。

Machine Teaching (MT) is an interactive process where a human and a machine interact with the goal of training a machine learning model (ML) for a specified task. The human teacher communicates their task expertise and the machine student gathers the required data and knowledge to produce an ML model. MT systems are developed to jointly minimize the time spent on teaching and the learner's error rate. The design of human-AI interaction in an MT system not only impacts the teaching efficiency, but also indirectly influences the ML performance by affecting the teaching quality. In this paper, we build upon our previous work where we proposed an MT framework with three components, viz., the teaching interface, the machine learner, and the knowledge base, and focus on the human-AI interaction design involved in realizing the teaching interface. We outline design decisions that need to be addressed in developing an MT system beginning from an ML task. The paper follows the Socratic method entailing a dialogue between a curious student and a wise teacher.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源