论文标题

LTL转移:时间任务规范的技能转移

LTL-Transfer: Skill Transfer for Temporal Task Specification

论文作者

Liu, Jason Xinyu, Shah, Ankit, Rosen, Eric, Jia, Mingxi, Konidaris, George, Tellex, Stefanie

论文摘要

在实际环境(例如家庭和制造业线)中部署机器人需要在新的任务规格上进行概括,而不会违反安全限制。线性时间逻辑(LTL)是一种广泛使用的任务规范语言,具有组成语法,自然会在任务之间引起共同点,同时保留安全保证。但是,大多数使用LTL规范进行加强学习的工作都独立处理每项新任务,因此需要大量的培训数据才能概括。我们提出了LTL-Transfer,这是一种零拍传输算法,该算法构成了在培训期间学到的任务无义技能,以安全地满足各种新型LTL任务规格。 Minecraft启发的域中的实验表明,在仅训练了50个任务后,LTL-Transfer可以解决100个挑战性的未见任务中的90%以上,而在300个常用的新型新任务中,有100%而不会违反任何安全限制。我们在四倍的移动操纵器的任务规划级别上部署了LTL转移,以演示其用于提取和转移和导航任务的零弹性转移能力。

Deploying robots in real-world environments, such as households and manufacturing lines, requires generalization across novel task specifications without violating safety constraints. Linear temporal logic (LTL) is a widely used task specification language with a compositional grammar that naturally induces commonalities among tasks while preserving safety guarantees. However, most prior work on reinforcement learning with LTL specifications treats every new task independently, thus requiring large amounts of training data to generalize. We propose LTL-Transfer, a zero-shot transfer algorithm that composes task-agnostic skills learned during training to safely satisfy a wide variety of novel LTL task specifications. Experiments in Minecraft-inspired domains show that after training on only 50 tasks, LTL-Transfer can solve over 90% of 100 challenging unseen tasks and 100% of 300 commonly used novel tasks without violating any safety constraints. We deployed LTL-Transfer at the task-planning level of a quadruped mobile manipulator to demonstrate its zero-shot transfer ability for fetch-and-deliver and navigation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源