论文标题

超越饼干盗窃图片测试:使用声学特征检测认知障碍

Going Beyond the Cookie Theft Picture Test: Detecting Cognitive Impairments using Acoustic Features

论文作者

Braun, Franziska, Erzigkeit, Andreas, Lehfeld, Hartmut, Hillemacher, Thomas, Riedhammer, Korbinian, Bayerl, Sebastian P.

论文摘要

标准化测试在检测认知障碍中起着至关重要的作用。先前的工作表明,使用标准化图片描述任务中的音频数据可以自动检测认知障碍。提出的研究超出了这一点,评估了我们对从两个标准化的神经心理学测试获得的数据,即德国SKT和德国版本的Cerad-NB,以及患者与心理学家之间的半结构化临床访谈。对于测试,我们专注于三个子测试的语音记录:阅读数字(SKT 3),干扰(SKT 7)和言语流利度(Cerad-NB 1)。我们表明,标准化测试中的声学特征可用于可靠地区分非受损的人的认知受损个体。此外,我们提供的证据表明,即使是从访谈的随机语音样本中提取的特征也可能是认知障碍的歧视者。在我们的基线实验中,我们使用开米特征和支持向量机分类器。在改进的设置中,我们表明使用WAV2VEC 2.0功能,我们可以达到高达85%的精度。

Standardized tests play a crucial role in the detection of cognitive impairment. Previous work demonstrated that automatic detection of cognitive impairment is possible using audio data from a standardized picture description task. The presented study goes beyond that, evaluating our methods on data taken from two standardized neuropsychological tests, namely the German SKT and a German version of the CERAD-NB, and a semi-structured clinical interview between a patient and a psychologist. For the tests, we focus on speech recordings of three sub-tests: reading numbers (SKT 3), interference (SKT 7), and verbal fluency (CERAD-NB 1). We show that acoustic features from standardized tests can be used to reliably discriminate cognitively impaired individuals from non-impaired ones. Furthermore, we provide evidence that even features extracted from random speech samples of the interview can be a discriminator of cognitive impairment. In our baseline experiments, we use OpenSMILE features and Support Vector Machine classifiers. In an improved setup, we show that using wav2vec 2.0 features instead, we can achieve an accuracy of up to 85%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源