论文标题
费舍尔·萨姆(Fisher Sam):信息几何形状和清晰度意识最小化
Fisher SAM: Information Geometry and Sharpness Aware Minimisation
论文作者
论文摘要
众所周知,最近的清晰度最小化(SAM)可以找到平坦的最小值,这对改善鲁棒性有益于更好的概括。 Sam通过报告当前迭代周围小社区内的最大损失值来修改损失函数。但是,它使用欧几里得球来定义邻域,这可能是不准确的,因为神经网络的损失函数通常是根据概率分布(例如类预测概率)定义的,从而使参数空间空间非欧几里得。在本文中,我们在定义邻里时考虑了模型参数空间的信息几何形状,即用Fisher信息引起的椭圆形取代Sam的欧几里得球。我们称为Fisher Sam的方法定义了符合基础统计歧管的内在度量的更准确的邻域结构。例如,由于我们的Fisher Sam避免了参数空间几何形状,因此SAM可能会在附近或不当远处探测最坏情况下的损失值。最近,另一种自适应SAM方法会根据参数幅度的规模拉伸/收缩欧几里得球。这可能是危险的,有可能破坏邻里结构。我们证明了在几个基准数据集/任务上提出的Fisher Sam的性能提高。
Recent sharpness-aware minimisation (SAM) is known to find flat minima which is beneficial for better generalisation with improved robustness. SAM essentially modifies the loss function by reporting the maximum loss value within the small neighborhood around the current iterate. However, it uses the Euclidean ball to define the neighborhood, which can be inaccurate since loss functions for neural networks are typically defined over probability distributions (e.g., class predictive probabilities), rendering the parameter space non Euclidean. In this paper we consider the information geometry of the model parameter space when defining the neighborhood, namely replacing SAM's Euclidean balls with ellipsoids induced by the Fisher information. Our approach, dubbed Fisher SAM, defines more accurate neighborhood structures that conform to the intrinsic metric of the underlying statistical manifold. For instance, SAM may probe the worst-case loss value at either a too nearby or inappropriately distant point due to the ignorance of the parameter space geometry, which is avoided by our Fisher SAM. Another recent Adaptive SAM approach stretches/shrinks the Euclidean ball in accordance with the scale of the parameter magnitudes. This might be dangerous, potentially destroying the neighborhood structure. We demonstrate improved performance of the proposed Fisher SAM on several benchmark datasets/tasks.