论文标题

对抗性反事实环境模型学习

Adversarial Counterfactual Environment Model Learning

论文作者

Chen, Xiong-Hui, Yu, Yang, Zhu, Zheng-Mao, Yu, Zhihua, Chen, Zhenjun, Wang, Chenghe, Wu, Yinan, Wu, Hongqiu, Qin, Rong-Jun, Ding, Ruijin, Huang, Fangsheng

论文摘要

一个良好的动作效果预测模型,称为环境模型,对于在机器人控制,推荐系统和患者治疗选择等许多领域中实现样本有效的决策政策学习非常重要。我们可以使用这种模型进行无限的试验来确定适当的行动,以便可以节省现实世界中查询的成本。它要求该模型正确处理看不见的数据,也称为反事实数据。但是,标准数据拟合技术不会自动实现这种概括能力,并且通常会导致不可靠的模型。在这项工作中,我们在模型学习中介绍了反事实风险最小化(CQRM),以推广到由特定目标策略查询的反事实数据集。由于目标政策在政策学习中可能是各种各样且未知的,因此我们提出了一个对抗性CQRM目标,其中该模型在对抗性策略查询的反事实数据上学习,并最终得出了可拖延的解决方案Galileo。我们还发现,对抗性CQRM与对抗模型学习密切相关,从而解释了后者的有效性。我们将伽利略应用于综合任务和现实应用程序中。结果表明,伽利略对反事实数据做出了准确的预测,因此显着改善了现实世界测试的策略。

A good model for action-effect prediction, named environment model, is important to achieve sample-efficient decision-making policy learning in many domains like robot control, recommender systems, and patients' treatment selection. We can take unlimited trials with such a model to identify the appropriate actions so that the costs of queries in the real world can be saved. It requires the model to handle unseen data correctly, also called counterfactual data. However, standard data fitting techniques do not automatically achieve such generalization ability and commonly result in unreliable models. In this work, we introduce counterfactual-query risk minimization (CQRM) in model learning for generalizing to a counterfactual dataset queried by a specific target policy. Since the target policies can be various and unknown in policy learning, we propose an adversarial CQRM objective in which the model learns on counterfactual data queried by adversarial policies, and finally derive a tractable solution GALILEO. We also discover that adversarial CQRM is closely related to the adversarial model learning, explaining the effectiveness of the latter. We apply GALILEO in synthetic tasks and a real-world application. The results show that GALILEO makes accurate predictions on counterfactual data and thus significantly improves policies in real-world testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源