论文标题

Antpivot:直播通过分层注意机制突出显示检测

AntPivot: Livestream Highlight Detection via Hierarchical Attention Mechanism

论文作者

Zhao, Yang, Lin, Xuan, Xu, Wenqiang, Zheng, Maozong, Liu, Zhengyong, Zhao, Zhou

论文摘要

最近几天,流媒体技术极大地促进了直播领域的发展。由于直播记录的长度过多,因此提取突出显示细分市场至关重要,目的是有效地生殖和重新分布。尽管事实证明,有许多方法可以有效地检测其他模式,但直播处理中存在的挑战,例如极端持续时间,大型主题转移,无关紧要的信息等等,因此很大程度上阻碍了这些方法的适应性和兼容性。在本文中,我们制定了一个新的任务直播突出显示检测,讨论和分析上述困难,并提出了一种新型的建筑抗议,以解决这个问题。具体而言,我们首先将原始数据编码为多个视图,并对其时间关系进行建模,以捕获层次注意机制中的线索。之后,我们尝试将突出显示剪辑的检测转换为搜索最佳决策序列的搜索,并使用完全集成的表示形式来预测动态编程机制中的最终结果。此外,我们构建了一个完全注重的数据集Anthighlight,以实例化此任务并评估模型的性能。广泛的实验表明我们提出的方法的有效性和有效性。

In recent days, streaming technology has greatly promoted the development in the field of livestream. Due to the excessive length of livestream records, it's quite essential to extract highlight segments with the aim of effective reproduction and redistribution. Although there are lots of approaches proven to be effective in the highlight detection for other modals, the challenges existing in livestream processing, such as the extreme durations, large topic shifts, much irrelevant information and so forth, heavily hamper the adaptation and compatibility of these methods. In this paper, we formulate a new task Livestream Highlight Detection, discuss and analyze the difficulties listed above and propose a novel architecture AntPivot to solve this problem. Concretely, we first encode the original data into multiple views and model their temporal relations to capture clues in a hierarchical attention mechanism. Afterwards, we try to convert the detection of highlight clips into the search for optimal decision sequences and use the fully integrated representations to predict the final results in a dynamic-programming mechanism. Furthermore, we construct a fully-annotated dataset AntHighlight to instantiate this task and evaluate the performance of our model. The extensive experiments indicate the effectiveness and validity of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源