论文标题

高维非线性动力学系统的深度学习增强合奏的数据同化

Deep learning-enhanced ensemble-based data assimilation for high-dimensional nonlinear dynamical systems

论文作者

Chattopadhyay, Ashesh, Nabizadeh, Ebrahim, Bach, Eviatar, Hassanzadeh, Pedram

论文摘要

数据同化(DA)是科学和工程中许多预测模型的关键组成部分。 DA允许使用系统的不完善动力学模型以及系统可用的嘈杂/稀疏观测来估算更好的初始条件。集合Kalman滤波器(ENKF)是一种DA算法,该算法广泛用于涉及高维非线性动力学系统的应用中。但是,ENKF需要使用系统的动态模型来发展大量的预测集合。这通常在计算上棘手,尤其是当系统的状态数量很大时,例如天气预测。在小合奏的情况下,ENKF算法中的估计背景误差协方差矩阵患有采样误差,导致分析状态的错误估计(下一个预测周期的初始条件)。在这项工作中,我们提出了混合集合卡尔曼滤波器(H-ENKF),该滤波器应用于两层准地球体流动系统作为测试案例。该框架利用了预先训练的深度学习数据驱动的替代物,该替代物可廉价地生成和进化系统状态的大型数据驱动的集合,以准确计算背景误差协方差矩阵,而采样误差较少。 H-ENKF框架估算了更好的初始条件,而无需任何临时本地化策略。 H-ENKF可以扩展到任何基于集合的DA算法,例如粒子过滤器,这些粒子过滤器目前难以用于高维系统。

Data assimilation (DA) is a key component of many forecasting models in science and engineering. DA allows one to estimate better initial conditions using an imperfect dynamical model of the system and noisy/sparse observations available from the system. Ensemble Kalman filter (EnKF) is a DA algorithm that is widely used in applications involving high-dimensional nonlinear dynamical systems. However, EnKF requires evolving large ensembles of forecasts using the dynamical model of the system. This often becomes computationally intractable, especially when the number of states of the system is very large, e.g., for weather prediction. With small ensembles, the estimated background error covariance matrix in the EnKF algorithm suffers from sampling error, leading to an erroneous estimate of the analysis state (initial condition for the next forecast cycle). In this work, we propose hybrid ensemble Kalman filter (H-EnKF), which is applied to a two-layer quasi-geostrophic flow system as a test case. This framework utilizes a pre-trained deep learning-based data-driven surrogate that inexpensively generates and evolves a large data-driven ensemble of the states of the system to accurately compute the background error covariance matrix with less sampling error. The H-EnKF framework estimates a better initial condition without the need for any ad-hoc localization strategies. H-EnKF can be extended to any ensemble-based DA algorithm, e.g., particle filters, which are currently difficult to use for high dimensional systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源