论文标题
Snyder模型对弯曲空间的概括
Generalizations of Snyder model to curved spaces
论文作者
论文摘要
我们考虑了Snyder代数的概括性,并具有de Sitter对称性的弯曲时空背景。作为特殊情况,我们获得了杨模型的代数和特殊相对论。我们通过规范相空间坐标来讨论这些代数的实现,在变形参数中最多可达第四阶。在三个特殊相对论的情况下,我们还找到了确切的实现,从而利用了其代数关系与Snyder模型。
We consider generalizations of the Snyder algebra to a curved spacetime background with de Sitter symmetry. As special cases, we obtain the algebras of the Yang model and of triply special relativity. We discuss the realizations of these algebras in terms of canonical phase space coordinates, up to fourth order in the deformation parameters. In the case of triply special relativity we also find exact realization, exploiting its algebraic relation with the Snyder model.