论文标题
电磁量规场波动在手性和列非电导率之间的选择中的作用
The role of electromagnetic gauge-field fluctuations in the selection between chiral and nematic superconductivity
论文作者
论文摘要
通过观察几种系统中的nematic超导性的动机,我们回顾了三角晶格上两组分配非常规超导体的领先配对不稳定性的问题 - 例如$(p_ {x},\ \,\,\,p_ {y}) $(d_ {x^{2} -y^{2}},\,d_ {xy})$ - wave。这样的系统具有两个可能的超导状态:手性状态(例如$ p+ip $或$ d+id $),它破坏了时间 - 反转对称性和nematic态(例如$ p+p+p $或$ d+d $),这打破了lattice的三倍旋转对称性。弱耦合计算通常比列型超导状态有利于手性,这提出了可以稳定后者的机制的问题。在这里,我们表明电磁场波动在选择这两种状态之间可以起着至关重要的作用。具体而言,我们在整合量规场波动后的两分量超导级参数的有效自由能,如果可以忽略空间阶参数波动,这是正式合理的。如常规的$ s $ - 波超导体,出现了一个非分析的立方术语。但是,与后者不同,立方术语取决于相对相位和两个阶参数分量之间的相对幅度,以使其通常偏爱nematic状态。该结果是一个直接的结果,即超导顺序参数的刚度不是各向同性的。与四分之一的竞争有利于手性状态的竞争,导致了重新归一化的相图,在该相位图中,列表在参数空间中的宽区域上置换了手性状态。我们分析了波动诱导的列相的稳定性,将我们的结果推广到四方晶格,并讨论它们对候选列型超导体(包括扭曲的双层石墨烯)的适用性。
Motivated by the observation of nematic superconductivity in several systems, we revisit the problem of the leading pairing instability of two-component unconventional superconductors on the triangular lattice -- such as $(p_{x},\,p_{y})$-wave and $(d_{x^{2}-y^{2}},\,d_{xy})$-wave. Such a system has two possible superconducting states: the chiral state (e.g. $p+ip$ or $d+id$), which breaks time-reversal symmetry, and the nematic state (e.g. $p+p$ or $d+d$), which breaks the threefold rotational symmetry of the lattice. Weak-coupling calculations generally favor the chiral over the nematic superconducting state, raising the question of what mechanism can stabilize the latter. Here, we show that the electromagnetic field fluctuations can play a crucial role in selecting between these two states. Specifically, we derive and analyze the effective free energy for the two-component superconducting order parameter after integrating out the gauge-field fluctuations, which is formally justified if the spatial order parameter fluctuations can be neglected. A non-analytic cubic term arises, as in the case of a conventional $s$-wave superconductor. However, unlike the latter, the cubic term depends on the relative phase and on the relative amplitudes between the two order parameter components, in such a way that it generally favors the nematic state. This result is a direct consequence of the fact that the stiffness of the superconducting order parameter is not isotropic. Competition with the quartic term, which favors the chiral state, leads to a renormalized phase diagram in which the nematic state displaces the chiral state over a wide region in the parameter space. We analyze the stability of the fluctuation-induced nematic phase, generalize our results to tetragonal lattices, and discuss their applicability to candidate nematic superconductors, including twisted bilayer graphene.