论文标题
迈向目标顺序规则
Towards Target Sequential Rules
论文作者
论文摘要
在许多实际应用程序中,顺序规则挖掘(SRM)可以为各种服务提供预测和建议功能。这是模式挖掘的重要技术,可以发现属于高频和高信心顺序规则的所有有价值的规则。尽管提出了SRM的几种算法来解决各种实际问题,但没有关于目标顺序规则的研究。有针对性的顺序规则挖掘旨在挖掘用户关注的有趣的顺序规则,从而避免产生其他无效和不必要的规则。这种方法可以进一步提高用户在分析规则和减少数据资源消耗方面的效率。在本文中,我们提供了目标顺序规则的相关定义,并制定了目标顺序规则挖掘的问题。此外,我们提出了一种有效的算法,称为靶向顺序规则挖掘(TASRM)。引入了几种修剪策略和优化,以提高TASRM的效率。最后,在不同的基准测试上进行了大量实验,我们根据其运行时间,内存消耗和可扩展性以及具有不同查询规则的查询情况分析结果。结果表明,与现有的基线算法相比,新型算法TASRM及其变体可以实现更好的实验性能。
In many real-world applications, sequential rule mining (SRM) can provide prediction and recommendation functions for a variety of services. It is an important technique of pattern mining to discover all valuable rules that belong to high-frequency and high-confidence sequential rules. Although several algorithms of SRM are proposed to solve various practical problems, there are no studies on target sequential rules. Targeted sequential rule mining aims at mining the interesting sequential rules that users focus on, thus avoiding the generation of other invalid and unnecessary rules. This approach can further improve the efficiency of users in analyzing rules and reduce the consumption of data resources. In this paper, we provide the relevant definitions of target sequential rule and formulate the problem of targeted sequential rule mining. Furthermore, we propose an efficient algorithm, called targeted sequential rule mining (TaSRM). Several pruning strategies and an optimization are introduced to improve the efficiency of TaSRM. Finally, a large number of experiments are conducted on different benchmarks, and we analyze the results in terms of their running time, memory consumption, and scalability, as well as query cases with different query rules. It is shown that the novel algorithm TaSRM and its variants can achieve better experimental performance compared to the existing baseline algorithm.