论文标题

SLAC LINAC相干光源处的基于光束的RF站故障识别

Beam-based RF Station Fault Identification at the SLAC Linac Coherent Light Source

论文作者

Humble, Ryan, O'Shea, Finn H., Colocho, William, Gibbs, Matt, Chaffee, Helen, Darve, Eric, Ratner, Daniel

论文摘要

加速器产生的信号太多,以供小型操作团队实时监视。此外,其中许多信号只能由具有多年经验的主题专家解释。结果,加速器性能的变化可能需要与专家进行耗时的咨询,以确定潜在的问题。在此,我们专注于Linac Cooherent Light Source(LCLS)的射频(RF)站的特定异常检测任务。现有的RF站诊断是带宽有限的,导致缓慢,不可靠的信号。结果,异常检测目前是手动过程。我们提出了一种基于光束的方法,使用光束位置监视系统中的射击数据识别加速器状态的变化;通过将基于光束的异常与RF站的数据进行比较,我们可以确定变化的来源。我们发现,我们所提出的方法可以完全自动化,同时比单独使用RF站诊断更少的假阳性事件更少。我们的自动故障识别系统已用于创建一个新数据集,以研究RF站与加速器性能之间的相互作用。

Accelerators produce too many signals for a small operations team to monitor in real time. In addition, many of these signals are only interpretable by subject matter experts with years of experience. As a result, changes in accelerator performance can require time-intensive consultations with experts to identify the underlying problem. Herein, we focus on a particular anomaly detection task for radio-frequency (RF) stations at the Linac Coherent Light Source (LCLS). The existing RF station diagnostics are bandwidth limited, resulting in slow, unreliable signals. As a result, anomaly detection is currently a manual process. We propose a beam-based method, identifying changes in the accelerator status using shot-to-shot data from the beam position monitoring system; by comparing the beam-based anomalies to data from RF stations, we identify the source of the change. We find that our proposed method can be fully automated while identifying more events with fewer false positives than the RF station diagnostics alone. Our automated fault identification system has been used to create a new data set for investigating the interaction between the RF stations and accelerator performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源