论文标题

SAR使用denoising扩散概率模型伪造

SAR Despeckling using a Denoising Diffusion Probabilistic Model

论文作者

Perera, Malsha V., Nair, Nithin Gopalakrishnan, Bandara, Wele Gedara Chaminda, Patel, Vishal M.

论文摘要

Speckle是一种乘法噪声,会影响所有连贯的成像方式,包括合成孔径雷达(SAR)图像。斑点的存在降低了图像质量,并不利地影响了SAR图像理解应用程序的性能,例如自动目标识别和变化检测。因此,SAR Despeckling是遥感中的重要问题。在本文中,我们介绍了SAR-DDPM,这是一种用于SAR Despeckling的脱氧扩散概率模型。提出的方法包括马尔可夫链,该链通过反复添加随机噪声将干净的图像转换为白色高斯噪声。伪造的图像是通过反向过程恢复的,该过程使用噪声预测器迭代地预测噪声,该噪声预测因子以斑点图像为条件。此外,我们提出了一种基于循环旋转的新推理策略,以提高选品的性能。我们对合成和真实SAR图像的实验表明,所提出的方法在定量和定性结果上都在最新的伪造方法方面取得了重大改进。

Speckle is a multiplicative noise which affects all coherent imaging modalities including Synthetic Aperture Radar (SAR) images. The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications such as automatic target recognition and change detection. Thus, SAR despeckling is an important problem in remote sensing. In this paper, we introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling. The proposed method comprises of a Markov chain that transforms clean images to white Gaussian noise by repeatedly adding random noise. The despeckled image is recovered by a reverse process which iteratively predicts the added noise using a noise predictor which is conditioned on the speckled image. In addition, we propose a new inference strategy based on cycle spinning to improve the despeckling performance. Our experiments on both synthetic and real SAR images demonstrate that the proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源