论文标题

通过渗透过渡表征空间点过程

Characterizing spatial point processes by percolation transitions

论文作者

Villegas, Pablo, Gili, Tommaso, Gabrielli, Andrea, Caldarelli, Guido

论文摘要

可以将位于嵌入连续空间中的一组离散的单个点视为渗透或非渗透,这取决于与每个圆盘/球相关的光盘/球的半径。这个问题与理论生态学有关,例如,在热带森林或稀树草原中对树种的空间渗透。在这里,我们重新审查了在连续系统中汇总随机点的问题(从$ 2 $到$ 6- $尺寸的欧几里得空间),以分析空间点过程中相应渗透过渡的性质。这个问题从规范的合奏方面发现了自然的描述,但在通常的盛大典型的合奏中,通常用于描述渗透过渡。这使我们分析了整体等效性的问题,并研究了由此产生的规范连续性渗透过渡是否与标准渗透转变具有其普遍特性,从而分析了各种均匀和异质的空间点过程。因此,我们提供了一种强大的工具来表征和分类大量的自然点模式,并基于渗透相变的基本属性揭示其基本属性。

A set of discrete individual points located in an embedding continuum space can be seen as percolating or non-percolating, depending on the radius of the discs/spheres associated with each of them. This problem is relevant in theoretical ecology to analyze, e.g., the spatial percolation of a tree species in a tropical forest or a savanna. Here, we revisit the problem of aggregating random points in continuum systems (from $2$ to $6-$dimensional Euclidean spaces) to analyze the nature of the corresponding percolation transition in spatial point processes. This problem finds a natural description in terms of the canonical ensemble but not in the usual grand-canonical one, customarily employed to describe percolation transitions. This leads us to analyze the question of ensemble equivalence and study whether the resulting canonical continuum percolation transition shares its universal properties with standard percolation transitions, analyzing diverse homogeneous and heterogeneous spatial point processes. We, therefore, provide a powerful tool to characterize and classify a vast class of natural point patterns, revealing their fundamental properties based on percolation phase transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源