论文标题
归一化权力先验总是打折历史数据
Normalized power priors always discount historical data
论文作者
论文摘要
权力先验用于将历史数据纳入贝叶斯分析中,通过将升至功率$α$的历史数据作为模型参数的先前分布。功率参数$α$通常是未知的,并且分配了先前的分布,最常见的是beta分布。在这里,我们在正常和二项式模型的情况下,对$α$的边际后部分布给出了新的理论结果。违反直觉,当当前数据完美地反映了历史数据和两个数据集的样本大小时,$α$的边际后部不会收敛到$α= 1 $的点质量,但接近与先前几乎没有不同的分布。结果意味着,如果使用$α$的Beta先验权力,则不可能完全汇集历史数据和当前数据。
Power priors are used for incorporating historical data in Bayesian analyses by taking the likelihood of the historical data raised to the power $α$ as the prior distribution for the model parameters. The power parameter $α$ is typically unknown and assigned a prior distribution, most commonly a beta distribution. Here, we give a novel theoretical result on the resulting marginal posterior distribution of $α$ in case of the the normal and binomial model. Counterintuitively, when the current data perfectly mirror the historical data and the sample sizes from both data sets become arbitrarily large, the marginal posterior of $α$ does not converge to a point mass at $α= 1$ but approaches a distribution that hardly differs from the prior. The result implies that a complete pooling of historical and current data is impossible if a power prior with beta prior for $α$ is used.