论文标题
三维红色超级巨型信封的冲击突破
Shock Breakout in 3-Dimensional Red Supergiant Envelopes
论文作者
论文摘要
使用achena ++,我们对冲击波的辐射辐射进行了3D辐射流动力计算,该冲击波在红色超级巨人(RSG)的外络线中进行了核心崩溃,并将成为IIP型超新星。完全对流的RSG包膜的本质上的3D结构从1D恒星模型中预测的亮度和冲击突破持续时间(SBO)的亮度和持续时间产生了关键差异。首先,在3D模型中传统光球以外的材料的低密度“光环”导致比一维型号在较低的密度下发生冲击突破。这将延长地表上任何给定位置的冲击突破闪光灯的持续时间至$ \ $ \ $ 1-2小时。但是,我们发现更大的影响是与密度大规模波动相关的本质上的3D效应,导致在不同时间在不同的半径上爆发冲击。这实际上将SBO持续时间延长至$ \ $ 3-6小时,这意味着辐射温度的多样性,因为整个恒星表面的不同斑块处于其辐射突破的不同阶段,并在任何给定时间进行冷却。这些预测的持续时间与SBO的现有观察结果更好。较长的持续时间降低了预测的发光量为3-10($ l_ \ mathrm {bol} \ sim10^{44} \ mathrm {erg \ s^{ - 1}} $),我们得出了具有爆炸能量和爆炸能量的新尺度和持续时间的爆炸能量和Stellar Properties。这些本质上的3D特性消除了使用观察到的上升时间通过轻轨时间效应测量恒星半径的可能性。
Using Athena++, we perform 3D Radiation-Hydrodynamic calculations of the radiative breakout of the shock wave in the outer envelope of a red supergiant (RSG) which has suffered core collapse and will become a Type IIP supernova. The intrinsically 3D structure of the fully convective RSG envelope yields key differences in the brightness and duration of the shock breakout (SBO) from that predicted in a 1D stellar model. First, the lower-density `halo' of material outside of the traditional photosphere in 3D models leads to a shock breakout at lower densities than 1D models. This would prolong the duration of the shock breakout flash at any given location on the surface to $\approx$1-2 hours. However, we find that the even larger impact is the intrinsically 3D effect associated with large-scale fluctuations in density that cause the shock to break out at different radii at different times. This substantially prolongs the SBO duration to $\approx$3-6 hours and implies a diversity of radiative temperatures, as different patches across the stellar surface are at different stages of their radiative breakout and cooling at any given time. These predicted durations are in better agreement with existing observations of SBO. The longer durations lower the predicted luminosities by a factor of 3-10 ($L_\mathrm{bol}\sim10^{44}\mathrm{erg\ s^{-1}}$), and we derive the new scalings of brightness and duration with explosion energies and stellar properties. These intrinsically 3D properties eliminate the possibility of using observed rise times to measure the stellar radius via light-travel time effects.