论文标题

部分可观测时空混沌系统的无模型预测

Unsupervised Knowledge Adaptation for Passenger Demand Forecasting

论文作者

Li, Can, Bai, Lei, Liu, Wei, Yao, Lina, Waller, S Travis

论文摘要

考虑到运输系统的多模式性质和潜在的跨模式相关性,通过从多模式数据中学习来提高需求预测准确性的趋势越来越大。这些多模式的预测模型可以提高准确性,但是当多模式数据集的不同部分由无法直接共享数据之间的不同机构拥有时,较不可能实用。尽管各种机构可能无法直接共享他们的数据,但他们可能会共享受其数据培训的预测模型,在此模型无法使用其数据集中确定确切信息。这项研究提出了一个无监督的知识适应需求预测框架,以根据其他模式的数据利用预训练的模型来预测目标模式的需求,该模型不需要源模式的直接数据共享。所提出的框架利用多种运输模式之间的潜在共享模式来改善预测性能,同时避免在不同机构之间直接共享数据。具体而言,首先根据源模式的数据学习了预训练的预测模型,该模式可以捕获和记住源旅行模式。然后,将目标数据集的需求数据编码为个人知识部分和共享知识部分,该部分将分别通过个人提取网络提取旅行模式和共享提取网络。无监督的知识适应策略用于通过建立预训练的网络和共享提取网络类似的方式来形成共享功能,以进一步预测。我们的发现表明,通过将预先训练的模型共享到目标模式可以改善预测性能,而无需依赖直接数据共享。

Considering the multimodal nature of transport systems and potential cross-modal correlations, there is a growing trend of enhancing demand forecasting accuracy by learning from multimodal data. These multimodal forecasting models can improve accuracy but be less practical when different parts of multimodal datasets are owned by different institutions who cannot directly share data among them. While various institutions may can not share their data with each other directly, they may share forecasting models trained by their data, where such models cannot be used to identify the exact information from their datasets. This study proposes an Unsupervised Knowledge Adaptation Demand Forecasting framework to forecast the demand of the target mode by utilizing a pre-trained model based on data of another mode, which does not require direct data sharing of the source mode. The proposed framework utilizes the potential shared patterns among multiple transport modes to improve forecasting performance while avoiding the direct sharing of data among different institutions. Specifically, a pre-trained forecasting model is first learned based on the data of a source mode, which can capture and memorize the source travel patterns. Then, the demand data of the target dataset is encoded into an individual knowledge part and a sharing knowledge part which will extract travel patterns by individual extraction network and sharing extraction network, respectively. The unsupervised knowledge adaptation strategy is utilized to form the sharing features for further forecasting by making the pre-trained network and the sharing extraction network analogous. Our findings illustrate that unsupervised knowledge adaptation by sharing the pre-trained model to the target mode can improve the forecasting performance without the dependence on direct data sharing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源