论文标题
障碍爬虫的最佳运动
Optimal Locomotion for Limbless Crawlers
论文作者
论文摘要
从细胞到生物,有限的爬行在生物学上无处不在。我们开发和分析了一个模型,以依靠底物的主动应力和变形依赖性摩擦,而依赖于底物的模型。我们发现,鉴于固定量的能量输入,最大程度地提高了爬虫的质量位移中心的最佳活动应力分布是行动波。这种理论上的最佳量对应于在生物生物体中观察到的类似蠕动样的延伸收缩波,这可能解释了蠕动的患病率是跨物种的融合步态。我们的理论阐明了在各种生物体中蠕动波中看到的爬虫的锚固阶段与逆向逆行和训练区别的生物系统中的关键观察。使用我们的最佳步态解决方案,我们得出了爬行速度和体重之间的缩放关系,并解释了三个数量级体重变化的earth上的实验。我们的结果提供了具有有限电池容量的最佳生物启发机器人设计的见解和工具。
Limbless crawling is ubiquitous in biology, from cells to organisms. We develop and analyze a model for the dynamics of one-dimensional elastic crawlers, subject to active stress and deformation-dependent friction with the substrate. We find that the optimal active stress distribution that maximizes the crawler's center of mass displacement given a fixed amount of energy input is a traveling wave. This theoretical optimum corresponds to peristalsis-like extension-contraction waves observed in biological organisms, possibly explaining the prevalence of peristalsis as a convergent gait across species. Our theory elucidates key observations in biological systems connecting the anchoring phase of a crawler to the retrograde and prograde distinction seen in peristaltic waves among various organisms. Using our optimal gait solution, we derive a scaling relation between the crawling speed and body mass, explaining experiments on earthworms with three orders of magnitude body mass variations. Our results offer insights and tools for optimal bioinspired crawling robots design with finite battery capacity.