论文标题
索引索引两个港口 - 哈米顿描述符系统的结构保存模型订单降低
Structure-Preserving Model Order Reduction for Index Two Port-Hamiltonian Descriptor Systems
论文作者
论文摘要
我们提出了一种新的基于优化的结构保护模型降低模型降低(MOR)方法,该方法具有分化指数二的港口描述符系统(pH-DAE)。我们的方法基于一种新的参数化,该参数使我们能够以最少数量的参数来表示任何线性时间不变的PH-DAE,这使其非常适合模型降低。我们提出了两种算法,这些算法直接优化了还原模型的参数,以相对于H-含量或H-2标准近似给定的大规模模型。这种方法有几个好处。我们的参数化确保了还原模型再次成为PH-DAE系统,并实现了大规模模型代数部分的紧凑表示,在基于投影的方法中通常需要更多涉及的处理。直接优化完全基于大规模模型的传输函数评估,因此独立于系统矩阵的结构。进行数值实验,以说明与其他结构保存的MOR方法相比,高精度和较小的模型顺序。
We present a new optimization-based structure-preserving model order reduction (MOR) method for port-Hamiltonian descriptor systems (pH-DAEs) with differentiation index two. Our method is based on a novel parameterization that allows us to represent any linear time-invariant pH-DAE with a minimal number of parameters, which makes it well-suited to model reduction. We propose two algorithms which directly optimize the parameters of a reduced model to approximate a given large-scale model with respect to either the H-infinity or the H-2 norm. This approach has several benefits. Our parameterization ensures that the reduced model is again a pH-DAE system and enables a compact representation of the algebraic part of the large-scale model, which in projection-based methods often requires a more involved treatment. The direct optimization is entirely based on transfer function evaluations of the large-scale model and is therefore independent of the system matrices' structure. Numerical experiments are conducted to illustrate the high accuracy and small reduced model orders in comparison to other structure-preserving MOR methods.