论文标题
关于LC振动的注释
A note on lc-trivial fibrations
论文作者
论文摘要
对于每一个从LC对中的LC振动$(x,δ)\ to z $,我们证明,基本变化后,存在一个正整数$ n $,仅取决于$ x $的尺寸,$ k_ {x}+δ$的Cartier索引,以及$ x $ x $ x $的$ x $ x $ x $ x $ n的;线性等同于卡地亚除数的回调。
For every lc-trivial fibration $(X,Δ) \to Z$ from an lc pair, we prove that after a base change, there exists a positive integer $n$, depending only on the dimension of $X$, the Cartier index of $K_{X}+Δ$, and the sufficiently general fibers of $X \to Z$, such that $n(K_{X}+Δ)$ is linearly equivalent to the pullback of a Cartier divisor.