论文标题
旋转 - 等级有条件的球形神经领域,用于学习自然照明之前
Rotation-Equivariant Conditional Spherical Neural Fields for Learning a Natural Illumination Prior
论文作者
论文摘要
逆渲染是一个不适的问题。以前的工作试图通过重点关注对象或场景形状或外观的先验来解决这一问题。在这项工作中,我们专注于自然照明的先验。当前方法依赖于球形谐波照明或其他通用表示,充其量是参数的简单先验。我们提出了一个有条件的神经场表示,基于带有警报网络的变异自动描述器,并将向量神经元直接构建到网络中。使用此过程,我们开发了一个旋转等值的高动态范围(HDR)神经照明模型,该模型紧凑且能够表达自然环境图的复杂,高频特征。在自然场景的1.6k HDR环境图的策划数据集上训练我们的模型,我们将其与传统表示形式进行了比较,证明了其用于反向渲染任务的适用性,并通过部分观察显示了环境图的完成。可以在jadgardner.github.io/reni上找到我们的数据集和训练有素的模型。
Inverse rendering is an ill-posed problem. Previous work has sought to resolve this by focussing on priors for object or scene shape or appearance. In this work, we instead focus on a prior for natural illuminations. Current methods rely on spherical harmonic lighting or other generic representations and, at best, a simplistic prior on the parameters. We propose a conditional neural field representation based on a variational auto-decoder with a SIREN network and, extending Vector Neurons, build equivariance directly into the network. Using this, we develop a rotation-equivariant, high dynamic range (HDR) neural illumination model that is compact and able to express complex, high-frequency features of natural environment maps. Training our model on a curated dataset of 1.6K HDR environment maps of natural scenes, we compare it against traditional representations, demonstrate its applicability for an inverse rendering task and show environment map completion from partial observations. A PyTorch implementation, our dataset and trained models can be found at jadgardner.github.io/RENI.