论文标题

通用Lipschitz的快速内核方法通过$ p $ -sparsified草图

Fast Kernel Methods for Generic Lipschitz Losses via $p$-Sparsified Sketches

论文作者

Ahmad, Tamim El, Laforgue, Pierre, d'Alché-Buc, Florence

论文摘要

内核方法是学习算法,这些算法享有坚实的理论基础,同时遭受了重要的计算限制。素描包括在缩小尺寸的子空间中寻找解决方案,是一种缓解这些计算负担的经过深入研究的方法。但是,统计准确的草图(例如高斯素描)通常包含很少的空条目,因此它们在内核方法中的应用及其非Sparse gram矩阵在实践中的应用程序仍然很慢。在本文中,我们表明,由于有效的\ emph {分解技巧},稀疏的高斯(和Rademacher)草图仍然产生理论上的valid近似值,同时可以节省重要的时间和空间。为了支持我们的方法,我们为单个和多个输出内核问题提供了多余的风险界限,并带有通用Lipschitz损失,从而为广泛的应用提供了新的保证,从稳健的回归到多个分数回归。我们的理论结果与实验相辅相成,表明我们方法比SOTA草图方法的经验优势。

Kernel methods are learning algorithms that enjoy solid theoretical foundations while suffering from important computational limitations. Sketching, which consists in looking for solutions among a subspace of reduced dimension, is a well studied approach to alleviate these computational burdens. However, statistically-accurate sketches, such as the Gaussian one, usually contain few null entries, such that their application to kernel methods and their non-sparse Gram matrices remains slow in practice. In this paper, we show that sparsified Gaussian (and Rademacher) sketches still produce theoretically-valid approximations while allowing for important time and space savings thanks to an efficient \emph{decomposition trick}. To support our method, we derive excess risk bounds for both single and multiple output kernel problems, with generic Lipschitz losses, hereby providing new guarantees for a wide range of applications, from robust regression to multiple quantile regression. Our theoretical results are complemented with experiments showing the empirical superiority of our approach over SOTA sketching methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源