论文标题

Super-IVIM-DC:使用有限的DWI数据,使用有限的DWI数据,基于voxel Int-Voxel Incrahent运动的胎儿肺成熟度评估以及数据矛盾

SUPER-IVIM-DC: Intra-voxel incoherent motion based Fetal lung maturity assessment from limited DWI data using supervised learning coupled with data-consistency

论文作者

Korngut, Noam, Rotman, Elad, Afacan, Onur, Kurugol, Sila, Zaffrani-Reznikov, Yael, Nemirovsky-Rotman, Shira, Warfield, Simon, Freiman, Moti

论文摘要

胎儿肺扩散加权MRI(DWI)数据的素内不连贯运动(IVIM)分析显示,在提供定量成像生物标志物方面的潜力是间接地反映出非侵入性胎儿肺肺部成熟评估的扩散和伪扩散的。但是,由于IVIM分析所需的大量不同的``b值''图像,因此漫长的获取时间无法进行临床可行性。我们介绍了Super-Ivim-DC一种深神经网络(DNN)方法,该方法将监督损失与数据一致性项相结合,以实现IVIM分析以有限数量的B值获得的DWI数据。我们通过数值模拟,健康的志愿者研究和IVIM分析了胎儿DWI数据的胎儿肺成熟,从而证明了超级IVIM-DC在经典和最新的DNN方法中的附加价值。我们的数值模拟和健康的志愿者研究表明,与以前的基于DNN的方法相比,来自有限DWI数据的IVIM模型参数的超级IVIM-DC估计值较低。此外,与经典和基于DNN的方法相比,胎儿肺有限的DWI数据的伪扩散分数参数的超级IVIM-DC估计与胎龄相关(0.555 vs. 0.463和0.310)。 Super-IVIM-DC有可能减少与IVIM数据分析DWI数据相关的长期获取时间,并为非侵入性胎儿肺成熟度评估提供临床上可行的生物标志物。

Intra-voxel incoherent motion (IVIM) analysis of fetal lungs Diffusion-Weighted MRI (DWI) data shows potential in providing quantitative imaging bio-markers that reflect, indirectly, diffusion and pseudo-diffusion for non-invasive fetal lung maturation assessment. However, long acquisition times, due to the large number of different ``b-value'' images required for IVIM analysis, precluded clinical feasibility. We introduce SUPER-IVIM-DC a deep-neural-networks (DNN) approach which couples supervised loss with a data-consistency term to enable IVIM analysis of DWI data acquired with a limited number of b-values. We demonstrated the added-value of SUPER-IVIM-DC over both classical and recent DNN approaches for IVIM analysis through numerical simulations, healthy volunteer study, and IVIM analysis of fetal lung maturation from fetal DWI data. Our numerical simulations and healthy volunteer study show that SUPER-IVIM-DC estimates of the IVIM model parameters from limited DWI data had lower normalized root mean-squared error compared to previous DNN-based approaches. Further, SUPER-IVIM-DC estimates of the pseudo-diffusion fraction parameter from limited DWI data of fetal lungs correlate better with gestational age compared to both to classical and DNN-based approaches (0.555 vs. 0.463 and 0.310). SUPER-IVIM-DC has the potential to reduce the long acquisition times associated with IVIM analysis of DWI data and to provide clinically feasible bio-markers for non-invasive fetal lung maturity assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源