论文标题

归一化切线束,带小分子和伪芬的品种

Normalized tangent bundle, varieties with small codegree and pseudoeffective threshold

论文作者

Fu, Baohua, Liu, Jie

论文摘要

我们提出了一个猜想的PICARD数字$ 1 $的Fano歧管列表,并具有伪式归一化切线捆绑包,我们在各种情况下通过将其与Russo的完整分裂性猜想和Zak的完整分解性相关联,并在各种情况下与小型代码构成。此外,通过研究PICARD数字$ 1 $的Projectivefective factent的伪芬阈值,以及通过研究分层Mukai Flops的几何形状来明确确定PICARD数字$ 1 $的投影切线式圆锥。作为副产品,我们在全球扭曲的对称性全体形态矢量场上获得了尖锐的消失定理,在Picard Number的合理同质空间上,$ 1 $。

We propose a conjectural list of Fano manifolds of Picard number $1$ with pseudoeffective normalized tangent bundles, which we prove in various situations by relating it to the complete divisibility conjecture of Russo and Zak on varieties with small codegree. Furthermore, the pseudoeffective thresholds and hence the pseudoeffective cones of the projectivized tangent bundles of rational homogeneous spaces of Picard number $1$ are explicitly determined by studying the total dual VMRT and the geometry of stratified Mukai flops. As a by-product, we obtain sharp vanishing theorems on the global twisted symmetric holomorphic vector fields on rational homogeneous spaces of Picard number $1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源