论文标题
HP-version内部罚款不连续的盖尔金方法
An hp-version interior penalty discontinuous Galerkin method for the quad-curl eigenvalue problem
论文作者
论文摘要
提出了不合格网格下的HP version内部罚款不连续的盖尔金(IPDG)方法来解决四核算特征值问题。我们证明了对于四方方程的数值方案的适当性,然后在网格依赖性规范中得出一个误差估计,该差异相对于H,但在H中具有不同的p扭转误差界限,在符合和不符合的四面体网格下。为了证明收敛性,建立了DG空间的HP version离散紧凑性。该方法的性能通过数值实验使用符合/不合格的网格和h-version/p-version改进来证明。观察到最佳的H version收敛速率和指数p-versencence速率。
An hp-version interior penalty discontinuous Galerkin (IPDG) method under nonconforming meshes is proposed to solve the quad-curl eigenvalue problem. We prove well-posedness of the numerical scheme for the quad-curl equation and then derive an error estimate in a mesh-dependent norm, which is optimal with respect to h but has different p-version error bounds under conforming and nonconforming tetrahedron meshes. The hp-version discrete compactness of the DG space is established for the convergence proof. The performance of the method is demonstrated by numerical experiments using conforming/nonconforming meshes and h-version/p-version refinement. The optimal h-version convergence rate and the exponential p-version convergence rate are observed.