论文标题

急诊科的基于机器学习的患者选择

Machine learning-based patient selection in an emergency department

论文作者

Furian, Nikolaus, O'Sullivan, Michael, Walker, Cameron, Reuter-Oppermann, Melanie

论文摘要

急诊科(EDS)的表现对于任何医疗保健系统都非常重要,因为它们是许多患者的入口处。但是,除其他因素外,患者敏锐度水平和访问EDS患者的相应治疗要求的变异性对决策者构成了重大挑战。平衡患者的等待时间,首先是由医生与所有敏锐度水平的总长度相处的,对于维持所有患者的可接受的操作表现至关重要。为了解决这些要求在为患者分配空闲资源时,过去提出了几种方法,包括累积的优先排队(APQ)方法。 APQ方法在系统和敏锐度水平方面将优先级分数分配给患者。因此,选择决策基于一个简单的系统表示,该系统用作选择功能的输入。本文研究了基于机器学习(ML)的患者选择方法的潜力。它假设对于大量的培训数据,包括多种不同的系统状态,(接近)最佳分配可以通过(启发式)优化器计算出关于所选性能指标的(启发式)优化器,并旨在模仿新情况时这种最佳行为。因此,它结合了系统的综合状态表示和复杂的非线性选择函数。拟议方法的动机是,高质量的选择决策可能取决于描述ED当前状态的各种因素,而不仅限于等待时间,而这些因素可以由ML模型捕获和利用。结果表明,所提出的方法显着胜过大多数评估设置的APQ方法

The performance of Emergency Departments (EDs) is of great importance for any health care system, as they serve as the entry point for many patients. However, among other factors, the variability of patient acuity levels and corresponding treatment requirements of patients visiting EDs imposes significant challenges on decision makers. Balancing waiting times of patients to be first seen by a physician with the overall length of stay over all acuity levels is crucial to maintain an acceptable level of operational performance for all patients. To address those requirements when assigning idle resources to patients, several methods have been proposed in the past, including the Accumulated Priority Queuing (APQ) method. The APQ method linearly assigns priority scores to patients with respect to their time in the system and acuity level. Hence, selection decisions are based on a simple system representation that is used as an input for a selection function. This paper investigates the potential of an Machine Learning (ML) based patient selection method. It assumes that for a large set of training data, including a multitude of different system states, (near) optimal assignments can be computed by a (heuristic) optimizer, with respect to a chosen performance metric, and aims to imitate such optimal behavior when applied to new situations. Thereby, it incorporates a comprehensive state representation of the system and a complex non-linear selection function. The motivation for the proposed approach is that high quality selection decisions may depend on a variety of factors describing the current state of the ED, not limited to waiting times, which can be captured and utilized by the ML model. Results show that the proposed method significantly outperforms the APQ method for a majority of evaluated settings

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源